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1 Introduction

The last decade has seen massive improvements in machine learning techniques that hold promise
for breakthrough advances in productivity and technology. At the same time, there is a growing
understanding that something fundamental is missing in the current framework of generative AI
and statistical machine learning in general [11, 7].

In this paper, we show how a machine learning approach based on the ideas of quantum
cognition ([8, 22] and references therein) is capable of capturing features of a system differently
from existing machine learning approaches. Additionally, this approach can accommodate a large
number of features and concept creation not bound by sharp categories.

2 Shortcomings of Classical ML

Whether implicitly or explicitly, machine learning has always been about learning a joint proba-
bility distribution of preprocessed features, whose relevance and significance is ascertained by a
human understanding of the domain. The fundamental problem with this classical probabilistic
description is that its complexity grows exponentially with the number of features. For example,
a probability distribution over N binary features corresponds to a vector of size 2N − 1. This
also leads to an exponential requirement for the amount of data needed to learn this distribution
statistically [22].

In finance, given the non-stationarity of financial time series it is easy to see that even for a
small set of features you lack sufficient data to model complex joint distributions. For example,
imagine you have available for training 10 years of daily data on 3,000 firms, which would amount
to approximately 7.8 million observations. If you wish to model the joint distribution of 10 features
bucketed into quintiles, you have 510 (approximately 9.8 million) bins, and statistics is clearly not
possible.

You could alleviate the dimensionality problem by using coarser bins, i.e. 210 bins would allow
for statistics, but this model is likely far less detailed than desired. Alternatively, in some cases
you could expand the amount of training data used by extending the sample much further back
in time, but this would incorporate data from when markets were substantially different, which
again leads to undesirable (less relevant) results. A surprising answer to these problems lies in
using quantum, rather than classical probabilities.
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3 Quantum Cognition Machine Learning

The first idea of quantum cognition emerged from the works of Aerts et al [1], Khrennikov [20],
and Busemayer et al [8] (see [24] for a recent survey). In these works, it is posited that the state
of mind is formally given by a quantum state, i.e., a vector in a Hilbert space, and all questions
that can be answered within that state of mind are represented as operators in that Hilbert space.

We demonstrate here how representing data as a vector in a Hilbert space with observables
represented by operators (matrices), can lead to a logarithmic reduction in the complexity of
representation. This dramatic economy of representation may explain why evolution would select
quantum cognition over classical statistical learning. As living creatures, we do not encounter the
world as well-structured data relevant to a task at hand. Instead, we are confronted by a barrage
of unstructured inputs that need to be made sense of, while focusing on what is important and
drawing conclusions by abstracting away what is irrelevant.

Building upon these insights, we demonstrate a new practical form of machine learning, which
we call Quantum Cognition Machine Learning (QCML). Our formulation naturally lends itself to
implementation on quantum computing hardware, but is also easily implementable on classical
hardware at lower Hilbert space dimensions. In our formulation, we define an error Hamiltonian
as a sum of a loss function for each observable:

H(xt,L, {Âk}) =
∑
k

L(Âk,xt,k) (1)

where xt is a data vector with K elements and is one of T total data vectors, L is a an arbitrary
non-negative loss function with a Hermitian output, and {Âk} is a set of Hermitian observable
operators which must be learned. We have flexibility in how we choose L so long as the result is
non-negative and Hermitian, and can choose simple forms inspired by Gaussian loss, i.e.:

H(xt,L, {Âk}) =
∑
k

(Âk − xt,k · I)2 (2)

or more complex functions for classification, the learning of context, or other objectives. This
error Hamiltonian depends on the data itself, the parameters which comprise the set of observable
operators {Âk}, and the choice of loss function L. Model tractability can be improved through
careful choice of parameterization of our operators, and we have developed several variants of this.

We learn the operators {Âk} through the formalism of quasi-coherent states [17, 31, 9]. Recall
that in quantum mechanics a state is a vector of unit norm in a Hilbert space, and is represented
in bra-ket notation by a ket |ψ⟩. The inner product of two states |ψ1⟩, |ψ2⟩ is represented by a
bra-ket ⟨ψ1|ψ2⟩. The expectation value of a Hermitian operator O on a state |ψ⟩ is denoted by
⟨ψ|O |ψ⟩, representing the expected outcome of the measurement corresponding to O on the state
|ψ⟩.

Training these models involves iterative updates to the ground state |ψt⟩1 of the error Hamil-
tonian and the observables Âk to reduce the ground state energy of H until desired convergence
is reached. The specifics of each of these steps depend on the choice of the loss function and how
we parameterize Âk.

Model Training

• Randomly initialize parameters of {Âk}
• Iterate over data and operators until desired convergence:

1: Generate H(xt,L, {Âk})
2: Holding Âk constant, find the ground state |ψt⟩ of H(xt,L, {Âk})
3: Holding |ψt⟩ constant, calculate gradients of H(xt,L, {Âk}) w.r.t Âk

4: Update Âk via gradient descent

1The ground state |ψt⟩ is the eigenstate associated to the lowest eigenvalue of the error Hamiltonian, and is also
called the quasi-coherent state
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Having suitably trained a set of operators Âk, consider an arbitrary set of J inputs xj , J ⊆
K, and the corresponding operators Âj . After solving for the ground state |ψJ⟩ of the error

Hamiltonian computed over this subset,H(xj ,L, {Âj}), the expected value of any operatorB ∈ Âk

is computed as: ⟨ψJ |B |ψJ⟩. This allows us to forecast any of our K operators based on the quasi-
coherent state computed over any subset of the operators2.

4 QCML Applied to Financial Forecasting

4.1 Overview

We illustrate how QCML can be used to capture complex joint distributions for financial forecast-
ing, while complementing existing Machine Learning techniques3. In order to build confidence in
the QCML framework, we begin with a very simple example involving two classic features, Mo-
mentum and Value. There are many definitions of Value, here we use Revenues scaled by Market
Cap, see section 4.2 below for details. Our goal is to train both a QCML model and a simple Neu-
ral Network (NN) to predict returns in excess of the linear returns to Momentum and Value, and
to compare the output of the two approaches. We then move to a second example incorporating
additional well-known features often used in equity forecasting and risk management.

4.2 Data and Features

We collect daily data on a dynamic set of roughly 1,500 US firms screened for the largest size,
liquidity and maturity. We create the following commonly used features4 using market data
sourced from Bloomberg, accounting data sourced from S&P Capital IQ, and securities lending
data sourced from S&P Securities Finance:

Accruals: Sign flipped 4 quarter change of (Total Assets - Working Capital - Total Liabilities
- Long Term Investments + Long Term Debt), scaled by Total Assets, demeaned by
GICS Industry Code and cross-sectionally normalized [27, 29]

Beta: Rolling 252 day time series estimated Beta to S&P 500 Index [28, 13, 12]

EBITDA to TEV: Prior 4 quarters Earnings Before Interest, Taxes, Depreciation, and
Amortization, scaled by Total Enterprise Value, demeaned by GICS Industry Code
and cross-sectionally normalized [21]

Momentum: Returns from 21 days ago to 252 days ago, cross-sectionally normalized [19, 10]

Operating Efficiency: Prior 4 quarters Revenues, scaled by Total Assets, demeaned by
GICS Industry Code and cross-sectionally normalized [30]

Profit Margin: Prior 4 quarters Net Income, scaled by prior 4 quarters Revenues, demeaned
by GICS Industry Code and cross-sectionally normalized [30]

Short Utilization: Sign flipped Lender Value on Loan averaged with a 10 day half-life, scaled
by Active Lendable Value averaged with a 10 day half-life, cross-sectionally normalized
[26, 25]

Size: Log of Market Cap, cross-sectionally normalized [5, 12]

Value: Prior 4 quarters Revenues, scaled by Market Cap, demeaned by GICS Industry Code
and cross-sectionally normalized [6]

GICS Dummies: Dummy variables formed based on GICS Industry Group [4, 3]
2Note this also provides a natural way for dealing with missing data: as J can be any subset of K, any missing

inputs can simply be excluded from the error Hamiltonian calculated for forecasting, rather than being pre-filled
in some manner. These missing inputs could also themselves be forecast given |ψJ ⟩

3We do not make any claims of superiority in these examples, but wish to show the framework is efficacious and
unique

4[15] uses their previously proposed q-factor model to test the robustness of various features proposed in the
financial literature, and also serves as an excellent survey of proposed features / anomalies
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4.3 Model Setup and Training

Models are trained using daily data from January 2008 through August 2013. While both NN and
QCML models can be updated online or through rolling / expanding retraining, for simplicity we
keep parameters for both models static after initial training.

Our target variable for purposes of model training is 15 day forward log returns, projected5

away from model input features as well as Beta, Size, and GICS Dummies. After projection,
target returns are cross-sectionally normalized. Although forecasts learned from models using
such a residualized target variable will likely have small average correlation with all of the features
that target returns have been projected away from (which includes the input features), to focus
on performance after controlling for linear effects, we project the final aggregate forecasts away
from the relevant input and control features.

To create more robust forecasts, we partition stocks into randomized groups of approximately
50, training individual NN and QCML models over each subset, and average forecasts for each
stock across 100 different such partitions.

The NN architecture and training approach we use adheres fairly closely to that recommended
in [14], other than our more complex approach to ensembling. Our neural network is implemented
in PyTorch and contains 3 hidden layers of 32, 16 and 8 nodes respectively, with batch normal-
ization [16] applied prior to ReLU activation [18, 23]. We use a simple mean squared error loss
function, and train using stochastic gradient descent and the Adam optimizer.

Our QCML model uses a Hilbert space dimensionality of 32, and operator representation
and training techniques proprietary to Qognitive, Inc., but following the general gradient descent
approach outlined in section 3, implemented on classical hardware.

4.4 Model Evaluation

To test performance, we use covariance estimated daily from daily returns6 to produce Markowitz
optimal investment portfolios, where portfolio weight w = V −1f given covariance V and forecast
f7. Given that the forecasts have been projected away from input and control features, these
investment portfolios will also have no exposure to input and control features.8

Investment portfolios are smoothed over 15 days to proxy for the fact that realistic investment
portfolios must trade into new forecasts gradually. We compute daily returns to the smoothed
portfolios, and analyze portfolio performance from September 2013 through March 2024.

We do not remove transaction costs as these forecasts are not intended to represent a stand-
alone investment strategy, but rather, as forecasts capturing complex attributes of the joint dis-
tribution which could be additive to an existing investment strategy.

4.5 Momentum / Value Model

For our first example, the model input features are Momentum and Value as defined in section
4.2. Thus, target returns and final forecasts are projected away from Momentum, Value, Beta,
Size and GICS Dummies.

In Table 1 we show the Sharpe ratios of each of the forecasts, as well as the Sharpe ratios of an
equal-risk weighted combination of the two.9 We find that both the NN and QCMLmodels produce
moderately positive signals, which are in excess of the linear returns to the inputs. However,
correlation of the return streams generated by the two approaches is only 0.41 over the full test

5If you wish to solve for portfolio weights which maximize expected returns, with a penalty for expected portfolio
variance, while maintaining zero exposure to a set of controls, then for weights w, forecast f , asset variance V , risk
aversion µ, and controls M , you need to solve for w which minimizes −w⊺f +0.5µw⊺V w such that w⊺M = 0. The
solution is w = V −1Rf where R = I −M(M⊺V −1M)−1M⊺V −1. Thus R is a projection operator that projects
away from M , consistent with our desired investment process. Rf is also the residual from an inverse variance
weighted regression of f on M

6Covariance is estimated using a technique proprietary to Duality Group
7Note that forecasts here have already been projected away from inputs and controls as explained in section 4.3

and footnote 5
8Given a matrix of input and control features M , we have f⊺M = 0 and w⊺M = 0
9The risk scalar for each strategy is a simple expanding window sample standard deviation of forecast returns,

lagged two days
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Table 1: Sharpe Ratios of returns to the NN and QCML forecasts for the Momentum / Value models. Strategy
portfolios have zero exposure to Momentum, Value, Beta, Size, and GICS Industry Groups, and thus no linear
contribution of those features to returns.

Period NN QCML Combination

Sep 2013 - Jun 2024 0.58 0.69 0.75

Sep 2013 - Apr 2017 1.91 0.80 1.61
May 2017 - Dec 2020 -0.30 0.73 0.27
Jan 2021 - Jun 2024 0.11 0.53 0.33

period, and we see an equal-risk weighted combination of the two approaches outperforms either
individual approach.

We plot the cumulative returns to the NN and QCML forecasts in Figure 1. From a visual
examination of the performance, it is clear the models are picking up on similar, but distinct,
underlying patterns.

As these simple models have only 2 inputs and a single forecast, we can also plot surfaces of
the forecasts as a function of the inputs, to visually compare what the NN and QCML models
learn. We plot the QCML and NN forecasts relative to Value and Momentum in Figure 2.

Figure 1: Cumulative returns to the NN and QCML forecasts for the Momentum / Value models. Strategy
portfolios have zero exposure to Momentum, Value, Beta, Size, and GICS Industry Groups, and thus no linear
contribution of those features to returns. From a visual examination of the performance, it is clear the models are
picking up on similar, but distinct, underlying patterns. The correlation of realized returns is 0.41. Returns have
been scaled by full sample realized volatility.

We notice some similarities between the surfaces - both models predict strong returns for
moderately high Value / moderately low Momentum stocks and poor returns for high Momentum
/ high Value stocks as well as low Momentum / low Value stocks. In both cases we could interpret
the models as having learned that Value is much stronger among low Momentum (loser) stocks,
and that the Momentum effect is weaker among high Value stocks while being stronger among
low Value (expensive) stocks.

This is consistent with previously documented findings for patterns seen in the interaction of
Value and Momentum stocks. For example, see [2], which documents a similar pattern despite
using a different Value metric (Book Value scaled by Market Cap) and having a data sample
independent in time relative to our training sample.
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Figure 2: QCML (upper) and NN (lower) Momentum / Value Model
Forecasts as a function of Momentum and Value
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Of course, the details of the NN and QCML forecast surfaces differ, and both approaches likely
learn an effect which is noisy relative to the truth. However, the fact that QCML learns something
both unique and reasonable when compared to a NN helps us to build confidence in QCML as
a forecasting technqiue. Additionally, as the number of features greatly increases, QCML would
have advantages as it does not suffer from the curse of dimensionality.

4.6 Extended Model

We now extend to the more interesting case of several input features. For these models, in addi-
tion to Momentum and Value, our input features include Accruals, EBITDA to TEV, Operating
Efficiency, Profit Margin, Short Utilization, and Size. As before, target returns and final forecasts
are projected away from inputs and controls, which in this case is all of the features defined in
4.2.

In Table 2 we show the Sharpe ratios of each of the forecasts, as well as the Sharpe ratios of
an equal-risk weighted combination of the two (formed as in the prior section).

In this case, both the NN and QCML models produce strongly positive signals, which are in
excess of the linear returns to the inputs. Additional, correlation of the return streams generated
by the two approaches is even lower than in the previous example, 0.32 over the full test period,
and we see an equal-risk weighted combination of the two approaches outperforms either individual
approach.

We plot the cumulative returns to the NN and QCML forecasts in Figure 3.

Table 2: Sharpe Ratios of returns to the NN and QCML forecasts for the Extended models. Strategy portfolios have
zero exposure to all input and control features (all features defined in section 4.2), and thus no linear contribution
of those features to returns.

Period NN QCML Combination

Sep 2013 - Jun 2024 1.25 1.25 1.39

Sep 2013 - Apr 2017 1.91 1.72 1.81
May 2017 - Dec 2020 1.05 1.26 1.48
Jan 2021 - Jun 2024 0.64 0.63 0.78

Figure 3: Cumulative returns to the NN and QCML forecasts for the Extended models. Strategy portfolios have
zero exposure to all input and control features (all features defined in section 4.2), and thus no linear contribution
of those features to returns. The correlation of realized returns is 0.32. Returns have been scaled by full sample
realized volatility.
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4.7 Combining Nonlinear and Linear Models

We next demonstrate the ability of QCML forecasts to improve upon linear forecasts, beyond the
improvement seen from NN forecasts. We do this by taking equal-risk weighted combinations of
linear forecasts with the non-linear NN and QCML forecasts.

For each previously discussed model (Momentum / Value and Extended models), we produce
linear forecasts from all input features except Size, which is maintained as a control. We produce
our linear forecast by taking the linear features and projecting them away from Beta, Size, and
GICS Dummies. This is not a statement regarding which linear features should be included in
a forecast, how to best form hedged portfolios of linear features, or how to appropriately weight
a diverse set of forecasts. It is solely meant to provide a simple demonstration of the ability
of QCML forecasts to improve linear models. We show the Sharpe ratios of each of the linear
forecasts in table 3.

In Table 4 we show the Sharpe Ratios of returns to equal-risk combined linear forecasts for
Momentum and Value features only, those linear forecasts with the NN Momentum / Value fore-
casts added, those linear forecasts with the QCML Momentum / Value forecasts added, and all
four strategies (Momentum, Value, Momentum / Value NN, and Momentum / Value QCML).
Both the NN and QCML forecasts improve the Sharpe Ratio of the linear forecasts alone, with a
slightly larger improvement seen from adding the QCML forecast.

In Table 5 we show the Sharpe Ratios of returns to equal-risk combined linear forecasts for all
features, those linear forecasts with NN Extended Model forecasts added, those linear forecasts
with QCML Extended Model forecasts added, and all nine strategies (seven linear forecasts, Ex-
tended NN, and Extended QCML). Again, both the NN and QCML forecasts improve the Sharpe
Ratio of the linear forecasts alone, with a slightly larger improvement seen from adding the QCML
forecast. Here, the best Sharpe Ratio is achieved by using both the NN and QCML forecasts.

We plot the cumulative returns to the linear and enhanced forecasts for Momentum / Value
models in Figure 4. We plot the cumulative returns to the linear and enhanced forecasts for
Extended models in Figure 5.

Table 3: Sharpe Ratios of returns to linear forecasts (projected away from Beta, Size, and GICS Dummies).

Period Accruals
EBITDA
to TEV

Momentum
Operating
Efficiency

Profit
Margin

Short
Utilization

Value

Sep 2013 - Jun 2024 0.29 0.04 0.65 1.36 0.27 0.93 0.25

Sep 2013 - Apr 2017 0.51 0.86 0.96 1.56 0.85 1.90 1.05
May 2017 - Dec 2020 -0.30 -1.48 0.47 1.12 -0.24 -0.29 -0.92
Jan 2021 - Jun 2024 0.84 1.19 0.53 1.42 0.24 1.30 1.15

Table 4: Sharpe Ratios of returns to equal-risk combined linear forecasts for Momentum and Value, those linear
forecasts with NN Momentum / Value forecasts added, those linear forecasts with QCML Momentum / Value
forecasts added, and all Momentum / Value strategies. The QCML forecast provides better diversification than
the NN forecast.

Period
Linear

Strategies
Linear Strategies

+ NN
Linear Strategies

+ QCML
All

Strategies

Sep 2013 - Jun 2024 0.91 0.99 1.11 1.07

Sep 2013 - Apr 2017 1.84 2.46 1.87 2.25
May 2017 - Dec 2020 -0.72 -0.71 0.02 -0.13
Jan 2021 - Jun 2024 1.54 0.99 1.42 0.97

8



Figure 4: Cumulative returns to equal-risk combined linear forecasts for Momentum and Value only, those linear
forecasts with NN Momentum / Value forecasts added, those linear forecasts with QCML Momentum / Value
forecasts added, and all Momentum / Value strategies. Returns have been scaled by full sample realized volatility.

Table 5: Sharpe Ratios of returns to equal-risk combined linear forecasts for all features, those linear forecasts
with NN Extended Model forecasts added, those linear forecasts with QCML Extended Model forecasts added,
and all Extended strategies. The QCML forecast provides better diversification than the NN forecast, but the best
Sharpe Ratio is achieved by using both the NN and QCML forecasts.

Period
Linear

Strategies
Linear Strategies

+ NN
Linear Strategies

+ QCML
All

Strategies

Sep 2013 - Jun 2024 1.17 1.38 1.43 1.58

Sep 2013 - Apr 2017 2.31 2.57 2.66 2.82
May 2017 - Dec 2020 -0.66 -0.32 -0.26 0.03
Jan 2021 - Jun 2024 1.77 1.81 1.82 1.83

Figure 5: Cumulative returns to equal-risk combined linear forecasts for all features, those linear forecasts with
NN Extended Model forecasts added, those linear forecasts with QCML Extended Model forecasts added, and all
Extended strategies. Returns have been scaled by full sample realized volatility.

9



5 Conclusion

We developed and demonstrated the use of a new machine learning paradigm using principles of
quantum cognition, which we call QCML. In a world with an immense proliferation of data sets,
the need to address large feature sets paired with small observation sets will become more and
more pressing. QCML achieves logarithmic economy of data representation, making it well suited
to meet this challenge, as well as the challenge of non-stationarity which reduces the amount of
relevant data available.

With classic statistical learning, every time you add a variable to a model the uncertainty grows.
This leads to difficulty or instability in forming statistical estimates, and creates a requirement
for judicious choices of model variables. In quantum systems, by contrast, the uncertainty of the
whole system can be less than the uncertainty of the components ([22] and references therein).

Here, we demonstrated an application of QCML to forecasting stock returns in excess of the
linear contribution to returns of the input features. We benchmarked forecasts produced by QCML
against forecasts produced by a neural network and showed that, even for relatively simple systems
and a classical hardware implementation, QCML can offer an advantage over or complement the
forecasts produced by the neural network.

In future work, we plan to continue studying the properties and applications of QCML. [9]
shows one such research direction, where the authors extend QCML to apply it to manifold
learning, specifically to the estimation of intrinsic dimension of data sets, demonstrating the
practicality of the proposed method on synthetic manifold benchmarks as well as real data sets.
We also are exploring ways to integrate QCML with existing statistical techniques, and working
towards a practical implementation on quantum hardware.
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